160 research outputs found

    Stellar feedback efficiencies: supernovae versus stellar winds

    Get PDF
    The final, definitive version of this paper has been published in Monthly Notices of the Royal Astronomical Society, Vol. 456(1): 710-730, February 2016, DOI: 10.1093/mnras/stv2699, published by Oxford University Press on behalf of MNRAS.Stellar winds and supernova (SN) explosions of massive stars (`stellar feedback') create bubbles in the interstellar medium (ISM) and insert newly produced heavy elements and kinetic energy into their surroundings, possibly driving turbulence. Most of this energy is thermalized and immediately removed from the ISM by radiative cooling. The rest is available for driving ISM dynamics. In this work we estimate the amount of feedback energy retained as kinetic energy when the bubble walls have decelerated to the sound speed of the ambient medium. We show that the feedback of the most massive star outweighs the feedback from less massive stars. For a giant molecular cloud (GMC) mass of 105 M⊙ (as e.g. found in the Orion GMCs) and a star formation efficiency of 8 per cent the initial mass function predicts a most massive star of approximately 60 M⊙. For this stellar evolution model we test the dependence of the retained kinetic energy of the cold GMC gas on the inclusion of stellar winds. In our model winds insert 2.34 times the energy of an SN and create stellar wind bubbles serving as pressure reservoirs. We find that during the pressure-driven phases of the bubble evolution radiative losses peak near the contact discontinuity (CD), and thus the retained energy depends critically on the scales of the mixing processes across the CD. Taking into account the winds of massive stars increases the amount of kinetic energy deposited in the cold ISM from 0.1 per cent to a few per cent of the feedback energy.Peer reviewe

    A microfabricated sensor for thin dielectric layers

    Full text link
    We describe a sensor for the measurement of thin dielectric layers capable of operation in a variety of environments. The sensor is obtained by microfabricating a capacitor with interleaved aluminum fingers, exposed to the dielectric to be measured. In particular, the device can measure thin layers of solid frozen from a liquid or gaseous medium. Sensitivity to single atomic layers is achievable in many configurations and, by utilizing fast, high sensitivity capacitance read out in a feedback system onto environmental parameters, coatings of few layers can be dynamically maintained. We discuss the design, read out and calibration of several versions of the device optimized in different ways. We specifically dwell on the case in which atomically thin solid xenon layers are grown and stabilized, in cryogenic conditions, from a liquid xenon bath

    A scalable high-performance magnetic shield for very long baseline atom interferometry

    Get PDF
    We report on the design, construction, and characterization of a 10 m-long high-performance magnetic shield for very long baseline atom interferometry. We achieve residual fields below 4 nT and longitudinal inhomogeneities below 2.5 nT/m over 8 m along the longitudinal direction. Our modular design can be extended to longer baselines without compromising the shielding performance. Such a setup constrains biases associated with magnetic field gradients to the sub-pm/s2 level in atomic matterwave accelerometry with rubidium atoms and paves the way toward tests of the universality of free fall with atomic test masses beyond the 10-13 level. © 2020 Author(s)

    First observation of trapped high-field seeking ultracold neutron spin states

    Get PDF
    Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement

    Testing isotropy of the universe using the Ramsey resonance technique on ultracold neutron spins

    Get PDF
    Physics at the Planck scale could be revealed by looking for tiny violations of fundamental symmetries in low energy experiments. In 2008, a sensitive test of the isotropy of the Universe using has been performed with stored ultracold neutrons (UCN), this is the first clock-comparison experiment performed with free neutrons. During several days we monitored the Larmor frequency of neutron spins in a weak magnetic field using the Ramsey resonance technique. An non-zero cosmic axial field, violating rotational symmetry, would induce a daily variation of the precession frequency. Our null result constitutes one of the most stringent tests of Lorentz invariance to date.Comment: proceedings of the PNCMI2010 conferenc

    An Improved Neutron Electric Dipole Moment Experiment

    Full text link
    A new measurement of the neutron EDM, using Ramsey's method of separated oscillatory fields, is in preparation at the new high intensity source of ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland (PSI). The existence of a non-zero nEDM would violate both parity and time reversal symmetry and, given the CPT theorem, might lead to a discovery of new CP violating mechanisms. Already the current upper limit for the nEDM (|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model. The new experiment aims at a two orders of magnitude reduction of the experimental uncertainty, to be achieved mainly by (1) the higher UCN flux provided by the new PSI source, (2) better magnetic field control with improved magnetometry and (3) a double chamber configuration with opposite electric field directions. The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL group's apparatus (which has produced the current best result) moved from Institut Laue-Langevin to PSI. The final accuracy will be achieved in a further step with a new spectrometer, presently in the design phase.Comment: Flavor Physics & CP Violation Conference, Taipei, 200
    • …
    corecore